Adaptive Control Utilising Neural Swarming

نویسندگان

  • Alex v. E. Conradie
  • Risto Miikkulainen
  • Christiaan Aldrich
چکیده

Process changes, such as flow disturbances and sensor noise, are common in the chemical and metallurgical industries. To maintain optimal performance, the controlling system has to adapt continuously to these changes. This is a difficult problem because the controller also has to perform well while it is adapting. The Adaptive Neural Swarming (ANS) method introduced in this paper satisfies these goals. Using an existing neural network controller as a starting point, ANS modifies the network weights through Particle Swarm Optimisation. The ANS method was tested in a real-world task of controlling a simulated non-linear bioreactor. ANS was able to adapt to process changes while simultaneously avoiding hard operating constraints. This way, ANS balances the need to adapt with the need to preserve generalisation, and constitutes a general tool for adapting neural network controllers on-line.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...

متن کامل

Dynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers

In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...

متن کامل

Adaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion

In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002